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Abstract. Weconsiderthe gaugegroup ~ of automorphismsof a U(N)-principal
bundle. We studytheEulerequationsfor geodesicsin ~ (or in associatedspacesof
connections).In particular, we showthe existenceanduniquenessofsolutionsfor
the Cauchy problem, and we give someexamplesof closedgeodesics,connecting
certain tharmonicelements)of (g to the identity. Finally, we study thecaseof
Rfemannsurfaces.
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SUMMARY

Given P -÷ M, a smooth principal SU(N)-bundle over a compactRiemanriian

manifold M, we considerthe <<gauge group>> ~ of smoothautomorphismsof P.
Every connectionA on P -÷ M induces a weak right invariant Riemannian

metric on ~‘, via right translationof the innerproduct:

(0.1) (u, u)= (dAu,dAv)

on the Lie algebrag of’s.

In §2,3 we write down the Euler equationsof geodesicmotion in ~ in §6
we prove local existenceand uniquenessof solutionsfor the associatedCauchy
problem, in the hypothesisof irreducibility of A; in §4 we study certain con-

servedquantities.
In § 7 we define <<harmonic elements>> of ~‘, with respectto the fixed con-

nectionA: they generaliseharmonicmapsM —~ U(N).
We then give two families of examplesof closedgeodesicsin ~, connecting

certainclassesof suchharmonicelementsto the identity.
The first one consistsof one-parametersubgroupsof~, associatedto <<harmo-

nic subbundles>>of the vector bundle V —* M, canonically associatedto P -* M.
The secondfamily is producedvia a loop of connectionswith constantcentral

curvature, in the case whenM is a compactRiemannsurface(cf. §8). (in parti-
cular we prove that Uhienbeck’s <<extendedsolution>>(cf. [20]) is a geodesicin
the spaceof mapsM2 —÷ U(N)). This loop of connectionsis relatedto the theory

of complete integrability, and Lax pairs with a complex parameter:cf. 101.

[20], [22], [23].
Finally, again in the case when M is a Riemannsurface, we show how to

extract pathsof holomorphic differentialsand line bundlesfrom geodesicpaths

in~.

We believe that, excepted§ 8, 9 mostof the materialis just an applicationof a
standardschemeto the caseof the gaugegroupactingon connections:we could

have therefore consideredas well, for example,the caseof the group of dif-

feomorphismsof a manifold, with its inducedactionon thespaceof Riemannian

metrics,as in the theory of elasticity. In particular, the readermay find overlaps

with [17], [18].
We have tried to avoid the use of infinite dimensionaldifferential geometry:

everything here is smooth, unless otherwise stated.The readermay find details

on the <<Lie group>> structureof ~ in [3]. [4], [1 5], [16], [18] (for example).



SOME REMARKS ON GEODESICS IN GAUGE GROUPS AND HARMONIC MAPS 337

1. INTRODUCTION AND DICTIONARY

Let M be a compactRiemannianmanifold, andlet P -+ M be anSU(N;-princi-

pal bundle(U(N) in §7, 8, 9).

Let ~ be the <<gauge group>> of smoothautomorphismsof P —* M; if V —+ M
is the complexhermitian vectorbundle,canonically associatedto P -+ M via the

standardrepresentationof SU(N)in CN then we have:

(I . I) smoothspecialunitary sectionsof End(V) —* M

The <<Lie algebra>>of(g, in a heuristic sense,but which canbe maderigorous

(cf. also §6), is:

(1.2) g = {smooth sectionsof thebundlead(P) M}

(wheread(P) -~ M is the Lie algebrabundleassociatedto P -+ M via the adjomt

representation);andwe mayidentify:

(1.3) g {smoothsu(N)— sectionsof End(V)-+M}

Let d = d (P) be the spaceof connectionson the principal bundleP -* M;

d(P) is an affine space,modelledon the vector space g ® T*(M) of 1-forms,
with coefficientsin su(N).

EachconnectionA E d (P) induces, for eachinteger k ~ 0, an exteriordif-

ferential:

(1.4) dA :g®AkT*(M)_g~A~iT*(M)

We remarkthat:

(1.5) dAdA(~)=[K(A),~]

whereK(A)E g ®A2T*(M) is the curvatureof the connectionA.

Using local coordinates,we may identify a connection A with a 1-form A;
we thenhave:

(1.6) K(A)=dA+ l/2[A,Aj

Using the metric on M, and on V -÷ M, and the Killing form on su(N),we may

define Riemannianproducts(,) on each g ® AkT*(M); consequently,we may
defineoperators:

dA* :g®A~~~T*(M)_÷g®AlCT*(M)

which are adjomtto the dA ‘s, with respectto ( ,).
We cannow define aeroughLap1acian>~~A

(1.7) ~
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for eachk ~ 0 (but we will useit only for k = 0).

Theaction of ~ on P—..Minducesan action:

(g,A)>.+g*(A)

defined by:

(1.8) dg~(~)t) =g~
1d~(gug”’)g

for eachyE g. andgEcg(but 1. 8) is valid for L’Eg A1’ T*(M)).
In local coordinates, if A is representedby the 1-form A , then we have:

g~(AY=g~’Ag+g’dg.

ForA E d(P). we indicateby ~g.A the gauge orbit of A.

2. EULER’S EQUATION FOR GEODESICS IN ~

We now fix a connectionA E d (F) on P -~ M.

We considerthe (weak) innerproducton g:

(2.0) cu, u)= (dAu,dAv)=— Tr(I~Au,u)

We equip ~ with the (weak) (pseudo)right-invariant Riemannianmetric
induced from (2.0). via right translation; and we want to study the equations

for geodesicsin ~‘, with respectto this metric.

PROPOSITION 2.1. Let : [a, b] ~ ç~be a path in ~. Then the following state-

mentsare equivalent:

(1) g~is a geodesic:

(2.1) (ii) djdtL\AF+[LSAF,F]=0 VtE[a,b]

(whereF = g’g 1)

Proof Let us considertheenergyfunctional:

(g’g~’,g’g~’~dt=

çb r

=) dtj (d~(g’g1)~d~(g’g~))

a M
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on the spaceof smoothmapsg : [a, b] -+ ~ (smoothin a elementarysense:local-
ly, on U .~ M, the mapg : [a, b] x U -+ SU(N)mustbesmooth).

We considera 1 -parametervariation:

g = g(s, t) : (— e, e) x [a, b] -÷~

g(0,t)=g(t)Vt; g(s, a)=g(a)g(s,b)=g(b)Vs;

andwe computethe first variationof L”.

çb ç

d/dsL” (g)J
5_0=j dtj (d/dsd~(g’g’),d~(jg”’))(5_0 =

a M

pb f

=j dtj (d/ds (g’g ~ ~~(gg))

a M

Let d/ds(g)15_0g
1=

~b (
d/dsL” (g) ~ =J dt j (d/dt (v) + [v,g’g”], ~~(gg)]) =

a M

çb ~

= j dtj (u,— d/dt ~g’g 1) ~ [g’g~1, I~

4(g’g~’)])

a M

Therefored/ds L’(g) s0= 0 for eachvariation gg
1 u if and only if the

right handsidesatisfiesthe equation(2.1).

We call (2.1) (thefirst) Euler equation.

Remark. Given F : [a, b] -÷ g, satisfyingequation(2.1), we canrecoverthe on-
ginal map g : [a, b] -# ~‘, by solving, for eachx EM, the linear ordinarydifferen-
tial equation:g’ = Fg; so eq. (2.1) is essentiallyequivalent,moduloright multi-

plication of g~by a constantelementof~,to the geodesicequationin ~ç.
Similarly, theCauchyproblem:

g : [a, b] ~ geodesic

g(a) =g~,g’(a)= g~

Is equivalentto the Cauchyproblemin g:
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~d/dti~AF+[L~AF, F}=0

F:[a,bJg.

3. EULER’S EQUATION FOR GEODESIC PATHS IN GAUGE ORBIT OF
CONNECTIONS

Wegive now an equivalentformulationof eq. (2.1).

Rememberwe havefixed a connectionA onP -+ M, in orderto give a Rieman-

nian structureto ~. Moreover, this choice allows us to associateto eachpath

[a, b] ~ ~ a path of connectionsA~,= (g~)*A,in the samegauge orbit of A.
(Conversely, given a path of connections A1, lying in the same gaugeorbit,

we can find, not uniquely if the connection is reducible, a path g1 : [a, b] —~

such that A1 = (g1)*A. This is due to a <<local slice theorem>> (cf. [3], [4])).

We remark that, using standardSobolev spaces,as in §6, eachp-orbit may

beconsideredasa submanifold of theaffine spaceA, with tangentspace:

(3.1) TB(f~B)=I?n{dB :g~÷g®T*(M)

(cf. [3], [4]); in particular,eachgaugeorbit inherits a Riemannianstructure,and

the following definition has a quite transparentgeometricalmeaning.

DEFINITION 3.1. We say that a path A1 of connections,lying in the samegauge

orbit, is a geodesic path (in a ~‘-orbit), if for each t the acceleration vector

is orthogonal to the ~-action.

Weremark that this is equivalent, using (3.1), to the equation:

(3.2) dA*(A~)=0 Vt

because ker d~’~’= (Im

PROPOSITION 3.2. Let A1 be a path of connectionson a SU(N)-bundleP -~

lying in thegaugeorbit ofa fixedconnectionA.

Then thefollowingstatementsare equivalent:

(i) A1 is a geodesicpath in the gaugeorbit ofA;

(ii) A1 = (g1)*(A) whereg1 : [a, b] -# ~ is a geodesicpath in ~

(3.3) (iii) d/dt (dA*4~)= 0 Vt

Proof (3.2) (3.3) is a trivial consequenceof the fact that,Vv E q ® T*(M),

we have [v, vu] 0 (where* is the Hodge operator:
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(3.4) * :g®AkT*(M)_ gø ~IflM_kT*(M) ).

(ii) c=v (iii)

= d~(g~g’)=

(by 1.8).

dA *(A;) = g ‘(dA*d~(g~g_
1))g= g’(~~~(g’g1))g

So, we have:

d/dt dA*(A;) = 0 ~ d/dt (g~~(gg)g) = 0 ~

~ g’(d/dt i,~(g’g1)~ [g’g” 1, i~~(jg’~)))g= 0.

We call equation(3.3) (the second)Eulerequation.

4. CONSERVED QUANTITIES AND MOMENT MAP

Definition 3.1 is natural. We can easily show that a pathA
1 in ap-orbit of

connectionsis geodesicif andonly if it extremizesthe appropriateenergy(length)

functional:

~
L(A)=— I (A’,A’)dt=L~(g)~ 2) ~ I

a

(Where g1 is an associated path in cg, as in prop. (3.2)).

Moreover, as in finite dimensional geometry, the geodesic flow on the tangent

space to a gauge orbit T( ~ A) is canonically dual, via the L
2 inner product

(,) on g a T*(M), to the hamiltonian flow on the cotangent bundle T*(~ . A),

with hamiltonian function the riemannian squared norm.
The p-action of the space of connections d induces a f’-action on the cotan-

gentbundleT*(d), andhenceon T*( ~. A):

(g,(A, T))H’(g*(A),g1Tg)

This action is, by general principles in Hamiltonian mechanics, sympiectic and

almost hamiltonian (cf. [9], or any other book on geometric Hamitonian
mechanics).

Dualizing,we geta momentmap:

(4.1) P:T*(d)~~~g*~gP(A, T)=~~~dA*(T)

(we leave the computationto patientreaders;it’s not difficult, but it needsome

manipulationsof the definitions; cf. also a similar computation in [Ii]).
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In particular, dA*A is invariant under the geodesicflow in d, or in any

~-orbit.
Therefore,eq.(3.3)expressthe conservationofmomentum.

The conservation of energy is given by the invariance of the arclength (A, A)

under time evolution. Indeed we have: d/dt (A., A;) 2(A’, A) = 0, because
A. is tangent to the g-orbit (by assumption), and A~’is orthogonalto it (by

definitionof geodesic).
We can recoverpart of this conservationlaws in eq. (2.1); (only part of them,

becauseeq.(2.1) has less dependantvariables).

PROPOSITION4.1. Let F : [a, b} —~g bea solution of(2.]). Then:

(i) thefunctions J~’(x) = Tr(L~AF)k (x) x EM

are constantsoft/ic motion;

(ii) theenergy E(F) = — ( (~ CF),F)
2) A

M

isa constantof the motion;
(iii) if g and A~are the correspondinggeodesicpaths in ~‘, and in ~g‘A (F=

=g’g”t andA
1 ~g1)*A),so that, byeq.(3.2),

dA *~4’= C Vt, thenwe have:

I
1’(x)Tr(C)1’, E(F)= ~ f(~AFF)=(A~A).

Proof. (i) and (ii) follow from (iii). Moreover, as in the proof of prop. 3.2,
C = d~

4~A= g
1L~i~fg.A~=g1(d~F)g,andgis unitary.

Remarks. (i) (4.1) (i) easily follows from direct computation as well, because

(2.1) is in the form of a Lax pair, and this producesthe eisospectral>>evolution
of

(ii) The group of real positive functions on M, acts via conformal transfor-
mationson the spaceof metrics on M, but it does not act on the spaceof con-
nections.Therefore,it changesthe geodesicequations,by changingthe <<Hamil-
tonian>>, but it doesnot produceany momentmap.When dim M = 2 the action

is anywaytrivial (cf. §8).
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5. HISTORICAL REMARKS

(A) The study of geodesics in a Lie group, equippedwith a right (or left)

invariant metric, dates back to Euler’s work on the motion of a rigid body with
onefixed point in lR3. Indeed,this physicalproblemis mathematicallyequivalent
to studying geodesics in SO(3),equippedwith a left invariantmetric. Thismetric,

obtainable through integration of the mass distribution of the rigid body, is
actually the unique physicaldatum of the problem.

For the sake of fun, we translate the classical notations in our setting.
Let g

1 be a geodesicpath in cg, and let (g1)*(A) be the corresponding geodesic

pathof connections.Then:

= g’g” 1 is thevelocity vectorwith respectto thebody;

= g
tg’ is the velocity vectorwith respectto the space;

g —~ g is the inertia operator (!);

Mb = ~~(g’g1) = /~AF is the kinetic moment (with respect to the body);

M
5 = dAM;. = C is the kinetic moment (w.r.t. the space).

Finally, Euler’s equationsfor themotionof a rigid body:

d/dtMb +[Mb,wb]=rO d/dtM5 =0

are our Euler’s equations(2.1) and (3.3):

d/dtAAF+[/~AF,F] =0 dldt(dA*A;’)=o.

(B) A secondclassicexampleof the study of geodesicsin a groupis the case:

= volumepreservingdiffeomorphismsof a manifoldM}

(M compactor with boundary);the geodesicflow in ~ describes the motion of

an ideal incompressiblefluid, moving in M. The corresponding equation is still
due to Euler; but we actually ignore if he was consciousof the connectionwith
his equation for the rigid body.

For a detailed analytic study of this case, see [7].

6. EXISTENCE AND UNIQUENESSOF SOLUTIONS FOR THE CAUCHY
PROBLEM

Wewant to studynow the Cauchyproblem:

d/dtL~AF+[L~AF,F]=0
(6.1)

F(O)=F0 F:[a,b]-#g
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All along this §, let A be an irreducibile connectionon the principal SU(N)-
bundle P -+ M. In particular, the irreducibility of A implies that there are not
covariant constant elements of g (the identity transformation is always covariant

constant,but doesnot belongto g); and that the Laplacian‘~A :g -~gis invertible.
Weintroduce the Sobolev spaces (cf. § 1):

(6.2) g
1 = {L28 — sections of the bundleadP —~M}

They are the filbert space completion of g with respect to the scalar product:

(u, u)
5 = ~= 1,,S((~A)’u,v)

The followingstatementsarewell known (cf. [3], [4], [15], 116]).

LEMMA 6.1. Lets> l/2m (m = dimM). Then

(i) gS isa BanachLie algebra:

K > 0, Vu, V E gS wehave [u, u] E gSand

(6.3) [u, v] L ~K(s)~ u LI vJ~

(ii) gS is the.Hilbert Lie algebra oftheHubert Liegroup:

= {L~’~— automorphismsofP-+ M}

LEMMA 62. Let A be an irreducible connectionon the principal SU(N)-bundle
P -÷M. Thenwehave:

(i) ker(dA ~

(ii) = dA *dA : —~ g~

2 is an isomorphism, Vs,

andA1 : gS -+g1 isa compact(hencecontinuous)operator.

THEOREM 63. LetA be an irreducible connectionon the principal SU(N)-bundle

P -~ M.
Then for each F

0E g
5, s > 1/2 rn + 2(m = dimM), theCauchyproblem(6.])

hasa uniquesolution F
1 : JR -+

In particular, if F0 is smooth,then F(t) is smoothfor eacht.

Proof. We write the system(6.1) in a different form: set v = AA FE g~
2(6.1)

is thenequivalentto:

d/dt v + [v,A;’v] = 0
(6.4)

u(0)=v
0

We write the system(6.4) in a moreabstractform:
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(6.5) d/dtv+f(v)=0, u(0)=v0

wheref : X -+ X (X Banachspace).

In our case we have:X = gS”
2 and f : ~s_2~+ g~”2 is the non linear map:

(6.6) f(v)=[A;’u,u]

The method for solving (6.5) is exactly the sameasthe onenormally usedfor
solving the Cauchyproblemfor ordinarydifferential equations,startingfrom the

transformation of (6.6) in the integral equation:

(6.7) v(t) = u~+ f(v(r)) dr

JO

The following Proposition is a summary (with no pretension of generality) of
Theorems 6.1.1 and 6.1.3 in [19], and of Theorems 5.1.1 and 5.6.1 in [13].

PROPOSITION 6.4. Supposethat:

(i) Thefunctionfin (6.5) is of class C1, andlocally Lipschitz.

(ii) Thereexistsa continuousnondecreasingfunctiong : IR+ -÷ 1R’~ such that,
for eacht ~ 0, themaximalsolutionsof the Cauchyproblem:

r’ =g(r), r(0)=rO

existsfor all positivetimes,’andwehave:

I f(u) I ‘~ g( u I) for eachu EX.

Then there existsa solutions u : [0, oo) -+ X to the Cauchy problem (6.5).

This solution is unique.

It is quite easyto check, that, for eachs — 2 ~‘ 1/2 m thefunctionf given by

(6.6) satisfies the assumptions(i) and (ii) of Proposition6.4. This is a simple
consequenceof its quadratic nature,and of lemmas6.1 and 6.2. It is indeed

possibleto chooseas function g in (ii): g(r) = C(s)r2. Therefore,by proposition

6.4, there exists a solution of the system6.4 u : [0, oo) -÷ gS_2, and hencea
solutionF : [0, oo) ~ gS of (6.1). The existence for t ‘~ 0 is thena consequence
of a simple argument of time inversion(cf. for exampleRemark5.6.1 in [13]). .

COROLLARY6.5. The gauge group ~ is complete, in the senseof differential

geometry,with respectto thepseudometric(0.1).

.TVotes. For an eventual Hopf-Rinow type theorem,cf. [6]; but Dowling’s results
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don’t look to be appliableto our situation.
For a detailedanalytic study of a relatedproblem (the study of geodesicsin

the groupof volume preservingdiffeomorphismsof a manifoldM). cf. thearticle

by Ebin andMarsden[7].

Remarks.The proof of Theorem 6.3 is quite easy.We support the idea that
Euler’s equation(2.1) should be consideredas an ordinary differential equation,

even if in a infinite dimensionalspace,with the Laplacian playing the role of an

algebraicterm,representingthecurvatureof’~q;as it shouldbe,beingan equation

describinggeodesics.

If the connectionA on P -÷ M doesnot satisfy the conditionsin lemma 6.2,
so that the associatedLaplacian AA is not invertible, then we do not expect
existenceand uniquenesstheoremsto hold for the CauchySystem(6.1). Indeed,
let us supposewe are looking for a solution of (6.1), expressedas aformal power

seriesin t: F(t) = ~> ~t1F
1with F1 Eg. Then (6.1)becomes:

(6.8) AAF,÷l=l/j+l~o~h</[Fj_h,AAFh] Vj~0

To solve (6.8) we have to proceedby inductionon I; but, if the conditionsof

lemma 6.2 are not satisfied,then theLaplacianAA is neitherinjective or surjecti-
ye; therefore,at each stage,a choice of an F, is not alwayspossible,or, when
possible,it is notunique.

In this case,trying to solve the Cauchyproblemfor the secondEulerequation

looks morepromising:

d/dt (dA *A’) = 0 A(0) =A0, A’(O) =A0
(6.9) 1

A’(t)EIm~dA :g~+g®T*(M)}

We indeed expect existenceand uniquenesstheoremsto hold for (6.9); but
rather than consider(6.9) directly (one could use the conservationof the mo-

mentum,to restrict the problem to integrationof a vector field, but the main
difficulty would be then the non-linear natureof the spaceon which it would

be defined a finite codiniensionalsubspaceof a gaugeorbit), it may be more
fruitful to restrictoneselfto the study of basedgaugegroup andgaugeLie alge-

brasin a first place.
We are not expertsin the subject, so we preferto leave the problem open.

7. STATIONARY SOLUTIONS AND HARMONIC ELEMENTS

Let P -+ M be an U(N)-principal bundle over a compactRiemannianmanifold
M; Let A E ~c!(P) be a fixed connectionon it: let ~< be thegaugegroupof smooth
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automorphismsof P -÷ M, and let g be its Lie algebraof smoothsectionsof
ad(P)-*M.

DEFINITION. A solution F: [a, b] -~ g of the 1st Eulerequation:

(2.1) d/dtAAF+[AAF,F]=0

is calledstationaryif

(7.1) d/dt(AAF)=O=[F,AAF]

Examples. (i) TakeFindependantof time, satisfyingthe eq.:

AA (F) = X(x)F(x).

(ii) In the case of geodesicsin SO(3), describingthe motion of a rigid body

with one fixed point in JR3 (cf. §5), stationarysolutionsare just purerotations
of the body, with rotation axesthe eigenvectorsof the inertia operator.They

are 1-parametersubgroupsof SO(3).
(iii) in the caseof geodesicsin the groupof volume preservingdiffeomorphisms

of a manifold M, describingthe motion of an incompressibleideal fluid in M,

stationarysolutionsare just thosewhichpreservethevelocity vector of the fluid,

in eachpoint of M.
Let now B be anotherconnection.ThenA — B is a u(N)-valued1-form,andwe

may considerthe L2-energy:

(7.2) E:d(P)~JR E(B)=_f(A_B.A_B)
9er.t~

DEFINITION. (i) We call B harmonic (with respectto A) if B is a critical point
forE in its orbit.

(ii) We say that g E ~ is harmonic (is an harmonicelement,or an harmonic

gauge),with respecttoA, if g*A is an harmonicconnection(w.r.t.A).

PROPOSITION 7.1. With thenotationsabove:

(i) B is harmonic(w.r. t. A) if andonly if

(7.3) dA*(A —B)0 if andonly if

A is harmonic (w.r. t. B).

(ii) g E (g is harmonic(w.r. t. A) if and only if

dA*(A —g*A) =0 if andonly if
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dA*i~A— (g’)*~A))= 0 if and only if

(7.4) d~*(g~~d~g)=0

COROLLARY 7.2. g E ~‘ is harmonic~ g~is harmonic.

Proof. (i) B is harmonicwith respectto A if and only if everyvariationB’ of B,
which is tangentto the gaugeorbit, is orthogonalto the distancevectorA — B.
But the tangentspacein B to thei-orbit is given by (3.1) Irn dB; so B is har-
monic w.r.t.A if andonly if A — B E (Im dB)’ = Ker dB “~

But

(7.5) dA*(A_B)=dA*(A_B)

because,for eachX, V Eg n T*(M), we have:[X, ~Y] + [Y, *X] = 0; (where * is

the usualHodge* operator).
(ii) follows from (i), and from formula (1.8). u

Corollary 7.2statesthat theinvolution:

restricts to the spaceof harmonic elementsof ~. The fixed point set of J is:

(7.6) GR(~)={gE~g~g
2=l}

(GR stays for Grassmannian);it may be identified with the spaceof subbundles

of the complex vector bundle V —* M canonically associatedto P -~M via the
standardrepresentationof U(N) in C’s’. Indeed,g2 = I if and only if we can

write (uniquely)

(7.7) g=(p’—p)

wherep p2 is the hermitianprojection operatoronto a subbundlepof V—i’M;

andp’ = (p’)2 = I — p is the hermitianprojection operatorontothe hermitian
complementp’ of p.

DEFINITION. We say that a subbundle2 of V -÷ M is harmonicwith respectto a
connectionA if theassociatedelementg = p’ —p E GR( ) is harmonic(w.r.t. A).

PROPOSITION7.3. LetgE~’,g2 = l,sothatg=(p’ —p) Thenwehave:

(1) E(g)= — g*A_A12=2f(dAp,dAp)
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(2) The following statements are equivalent.

(i)g is harmonic.
(ii) g is a critical point of the energy (7.2), with respect to varia-

tions in GR(f~).

(7.8) (iii) [AAp,p]=O

Proof. (1) follows from patientcomputations,which wepreferto omit.
(2) By (1), (ii) is equivalenttop beinga critical pointof

E(p)=2 (dAp,dAp)

in the spaceof p’s. We allow variationsof the form: t ~ h~ph, whereh : (— e,
e)-÷~,h(0)=l.Thereforep’=[p,v],withuEg;and

E’(p) = 4f(P’~AA p) = 4f(v~ [p, AAP}

ThereforeE’(p)=O VuEg ~=‘=~‘[p,AAp] =0.
By prop. 7.1,g is harmonicif and only if d~*(.g*A—A) = 0. We canuse local

coordinateson M, identifying the connectionA, with a 1-formA E g e
withdA(.)= d(.)+[A, .];thenwehave:

g*(A)—A =g~’Ag+g’dg—A;

write g = I —

g*(A)—A = 2(2pAp—p’—Ap + [p. dp]) =

2([p, dp + [A, p]]) =

2([p, dAp]);

andwe have:

dA*[p, clAp] = [p, AAp].

Example. Let P = M x U(N), so that ~ = (smooth mapsM -+ U(N)}, and
GR(~)= {smooth mapsM -+ Gk(CN), with 1 ~ k ‘(N— 1}; andletA bethe0-

connection, given by standarddifferentiation. Then an elementin cg (resp. in
GR(f~)) is harmonic if and only if it is an harmonicmapM -÷ U(N) (resp. M -*

-+ Gk(C”)). The equivalence of (i) and (ii) is nothing but the standard fact that
an harmonic map into Gk (CN) is harmonic if and only if it is harmonic as a map
into U(N). This is consequence of the fact that the inclusion map (7.7), viewed
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as a map Gk (~P’~)—* U(N) is totally geodesic.

Let g = (p’ — p) E ~ definea subbundlep S V —* M. We associateto p the

loop:

g1 : [0, 2ir] -+ ~ t ~ (p’ + e”p) = exp (itp)

It is a oneparametersubgroupof cg.

THEOREM 7.4. Let g E ~, g
2 = 1; and let g

1 = exp (itp) be theassociated1-para-

metersubgroupof~g,as above.

Then the following statements are equivalent.
(i) g = g,1 is an harmonic element of’~g.

(ii) t F÷g1is a (stationary)geodesicin ~, of length ir(2E(g))
112.

Proof. g=g, isharmonic~=*[AAp,p]=0

g
1 is a geodesic~ F = g’g~satisfiesthefirst Eulerequation(2.1):

d/dIAAF+ [AAF, F] = 0

.~ F = ip satisfiesfAA F, F] = 0.

Moreoverthe lengthof g1 is:

L(g1) = 27r1 dApj ‘= 2~r(I/2E(g))
112= Ir(2E(g))172.

DEFINITION. The geodesic length spectrum of ~ (with respectto the connection

A) is theset of length of closedgeodesicsin g.
The energyspectrumof harmonicelementsof ~ (w.r.t. A is thesetof energies

of harmonic elementsof ~ . In particular, the energy spectrum of harmonic

subbundlesof V —~ M is the energy spectrumof harmonicidempotentelements
g of ~ç.

COROLLARY 75. The energy spectrumof harmonic subbundlesof V -~M is

contained in 1/2 7r2 thesquareof thegeodesiclengthspectrumof’~q.

Proof By theorem7.4, we can associateto each harmonicg = (p’ — p) the
closedgeodesict f-~g

1= (p’ + e”p).

Exampie. Let us consider,for simplicity, the casewhenM is a compactRiemann

surfaceof genush, P = M x U(N), and A is the zero connection.Thenthe cons-
truction in this § associatesto each harmonic map g = (p’ — p) : M —~Gk(CA)
the geodesicin the group fq of smoothmapsM -+ U(N) g1 = exp(itp).

By a theorem of Killingback [12], ir1(~)= 7r2(U(N)
2h? a ir

3(U(N))
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Thereforewe canassociatea degreeb(.g1) to eachmapg1 :51 —~

More over, wecan definethetopologicaldegreed(g)of a mapg :M
2—~Gk(CN)

as the algebraicdegreeof the inducedmap in cohomology:f* :H2(Gk(C~’),Z)~
~Z-+Z~H2(M, ~).

PROPOSITION 7.6. Let g : M2 -+ Gk (Ci”), and let g
1 be theassociated1-parameter

subgroupof thespace f~of mapsM
2 -+ U(N). Then the topologicaldegreeofg is

equal to the topological degreeof theloop g
1.

Proof (sketch).To compute the degreeof g1, we view g1 not as a loop in ~, but

asa map from M
2 into the (<loop group)> (cf. [2]) cLU(N). The positivegenerator

of the secondcohomology group of 12U(N) is the left invariant,symplectic2-
form S (cf. [2], [22]) inducedvia left translationby:

S(~,x)= — I (C,x)
8iir2

for ~, x in the Lie algebraof &2U(N).
Therefore,doingsomecomputation(cf. [21], [22]), weget:

~t)=f(~t)*(S)= ~jIP1aPI2_IP1aPI2=d~) U

Remark. The constructionsin this § may be generalized to other groups and
symmetricspaces,ratherthanU(N) and the complex Grassmannian.

As an example, let M be a compact Riemannian manifold of even dimension,

and let A be a connection on its tangent space.Let ff be the gauge group:

= { smooth orthogonal sectionsof Aut(M) -~ M}

We may define, viaA, a right invariantmetric on f~,asin §1.

Let us considerthespace:

=— l}

9may be describedas the spaceof almostcomplexstructureson M, which are
compatiblewith its given Riemannianstructure.

We considerthe energyE : f~-+ IR, and its restriction to ,~ then we may

define the spacesof harmonicelementsof ~, and of harmonicalmostcomplex
structures,as above.

We associateto each almostcomplex structureJ on M, the 1-parametersub-
groupof ~:
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t ~ = exp(tJ)= cos t + Jsen t.

Wehavethen a completeanalogueof theorem7.3.

PROPOSITION 7.7. The following statements are equivalent.

(i) g
1 = exp(tJ) is a (stationary)geodesicin ~.

(ii) J = g,~is an harmonicalmostcomplexstructure.

(7.10) (iii) [AAJ, J] = 0

Note:eq.(7.10) wasfirst shownto meby C. Wood. .

8. HARMONIC GAUGES ON RIEMANN SURFACES & LAX PAIRS

Let us take now M = M
2 compactRiemannsurface,equippedwith an hermi-

tian metric, andP -÷ M principal U(N)-bundle over M. Let ~g= Aut(P) be the
gaugegroup,and g its Lie algebra.

It is well-known that the unique topological invariant of a U(N)-principal

bundleP -÷ M2 is its first Chern class c
1(P) E H

2(M, Z) Z; or equivalently,

the normalised1stChernclass:

(8.1) i.t(P)= c
1(P)/rankP

Let d = d (F) be the space of connectionson P -+ M. We considerthe sub-

spaceof A(P):

(8.2) dP(P)r={A Ed(P)~*K(A)=—2i7r~(P)}

consistingof connectionswith constantcentralcurvature— 2iir~.t(P).
Thespace ‘~is not empty, becauseby a well known theoremof Narasimhan

and Seshadri,it contains,in particular,stablebundles(cf. [3], [5]). Its <<tangent
space>>at eachpointB EdIA is given by:

(8.3) TB(d~)={kerdB :g aT*(M)~+g®A
2T*(M)}

We remark that d’~is stableunderthe actionof~g!.Infinitesimally, this is expres-

sed by comparing (8.3) and (3.1): indeed, for eachB E d~ we get, from (1.5)
and theconstantcentralcurvatureconditionfor the connectionB, we get:

(8.4) dBodB=O

so that:

TB(dP)=kerdB2lmdB _TB(~~

For the sakeof simplicity, if B E d~, we say that B is a connectionwith ji-

curvature.
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As usual,we fix now a connectionA on P -+ M; moreover,we takeA with

M-curvature.As in §7, wemay form the L2-energy:E : A -* IR

1 11
(8.5) E(B)= —IA—B 2 = — j Tr(A—B)/\ *(A—B)

2 2)
M

Remarks. Becauseof the conformal invarianceof the Hodge *..operator on 1-
forms in dimension 2, E is invariant with respectwith conformal changesof
metric on M. Similarly, the usual right invariant metric on the gaugegroup~,

given by right translation of (0.1), is conformally invariant, and thereforethe

equationsfor geodesicsin ~. What is not conformallyinvariant is the condition

for a connectionto haveconstantcurvature,sinceit needsa volumeform on M,
in order to make sense.Anyway, once we have chosenthe spacedM, we will

needonly a conformal class of metrics on M2, i.e. a complex structure,in the
following.

As in §7, we define the spacesof harmonicconnections,and of harmonic

gauges(alwayswith respectto the fixed a-curvatureconnectionA).

PROPOSITION 8.1. Let B be a connection with ji-curvature on P -~ M2. Let us

denote4= 1/2(A_B)EgaT*(M),Q= l/2(A +B)Ed(P).
Then thefollowing statementsareequivalent:

(i) B is harmonic (w.r.t. A).

(ii) for eacht E [0, 2ir] theConnection:

(8.6) A~=Q+cost~F+sent*~ A
0=A, A, =B

hasku-curvature.

(iii) for each tE[0, 2rr]A~÷,~is harmonic with respect toA~.

(iv) (Q, 4’) satisfiesthefollowing systemof equations.

~(K(Q) + l/2[4, 4~])= — 2iir ~(P)
(8.7)

d01~=dQ(*~)=O

Proof We know, by prop.7.1, thatB is harmonic w.r.t. A if andonly if dA *(A —

— B) = 0. This is equivalent to dQ(*~)= 0. But we have:

K(A~)= 1/2(1 + cos t)K(A) + 1/2(1 —cos t)K(B) +

+ 1/2costdB*(A—B)
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Therefore *K(A~) = — 2irip ~. d~~(A — B) = 0, *K(A) = *K(B) = — 2hrp.
Moreover~K(A) = *K(B) = — 2i7rp is equivalent to:

*(K(Q)+ l/2[4),4)])=—2i7rp~P), dQ4)=O

Moreover,theinvarianceof the system(8.7) underthe S1-action:

4) ~ cost 4) + sen t * 4)

implies that we couldhavechosenasA, B any pairof connectionsA
1, A1+ ,~.

Remarks. We havesucceededin representingthe non-linearsystem(8.7) in the
form of p-curvature condition for a ioop of connections A1, or, in otherwords,

in the form of a (local) compatibility condition for a loop of linear systems:

dAvf=O u:[O,2irJ-÷g

This kind of representationis usually called Lax (or Zakharov-Shabat:cf. [23])
representationof the non linear system (8.7), and connectsits study with the

theory of completely integrablesystem,and soliton-typeequations(cf. [23]).
The representationis fundamentalin analysingthesolutionsof (8.7).

For example,in the particular case,P = M x U(N), ~ = 0, A = 0, theioop of
connections((8.6) has beenused to give completegeometricaldescriptionsof

harmonicmaps~2 -+ U(N) (cf. [20], [22]) andT
2 -+SU(2) (cf. [10]).

(2) The Hodge operator * verifies (*)2 = — 1 on I-forms overM; it definesin

this way a complex structure on the space of connections.The loop (8.6) is
then a circle, of centreQ andray 4), lying in a complexaffine subspaceof d(P)

of complex dimension I. Conversely,gIven any such circle, lying in the spaceof
p-curvatureconnections,then its centreQ and any one of its rays 4), are a so-

lutions of (8.7).
The following definition has quite a transparentgeometricalmeaning,andit

canbegiven the right variational justification, exactlyasfor def. 3.1.

DEFINITION. We say that a path A
1 of p-curvature connectionson P -÷ M is a

geodesicpath (in the spaced~ of p-curvature connections)if for each t the

accelerationvectorA~is orthogonalto d~.
Becauseof (8.4), this is equivalent to saying that, for each t, A’1’ lies in:

ImdA :gaA
2T*(M)~+g®T*(M).

PROPOSiTION 82. Let (Q, 4)) be solutions of (8.7) on P -÷ M2. Let A~be the
associatedloop of p-curvatureconnections(8.6).

Then thefollowingstatementsareequivalent.

(i) A
1 is a geodesicloop in the spaceof p-curvature connections.
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(ii) A1 liesin thesamefq -orbit for each t.

(iii) A1 is a geodesicloop in a ~ç-orbit of connections.

(iv) ~g~: [0, 2ir] -+ ‘~#geodesicloop such that

(8.8) (g1)*(A0)=A1 for each t.

Proof. (iii) and (iv) are equivalent, as noticed in §3; moreover (iii) obviously

implies (ii), whichin turn is equivalentto:
for eacht the velocity vectorA is tangentto the~g-action:i.e.
foreacht,AEImdA :g~÷g®T*(M).
But A = * A’, so (uS is equivalentto (i). Moreover(i) implies: (A1 remainsin

thesamep-orbit for eacht) + (A’ E Im dA £ Ker dA), which implies (iii).

Remarks. (1) The <<momentum>> (cf. §4, 5) of the loop of connectionsA1 is:

dA * (A,) =— l/4[A —B,A —B] =— [4), 4)].

(2) In the caseM is the Riemannsphere,the 1oop G1 in (8.8) alwaysexists.
This is due to the fact that on CIP

1, the spaced’~of connectionswith p-curva-

ture alwaysconsistsof a single~-orbit (cf. [19]).
(3) Let us considerthe casewhenP = x U(N), p = 0, A = 0; ~is then

isomorphic to the spaceof smoothmaps from M2 into U(N). Thenwe canlook
at the loop (8.8) g

1 : S’ —~ ~ as a map G : M
2 -+ fill (N), wheref~U(N)is the

<<loop group>> of U(N) (cf. [2]). The map G hasbeencalled by Uhlenbeck[20]
<<extended solution>>; it is a holomorphic map into the infinite dimensional

Kahler manifold ~U(N). Its degreeis (cf. [22]) 1 /8ir the energyof theharmonic

mapg~:M2-+U(N)
(4) Kiffingback has computedin [12] the homotopy groups of the gauge

groups ~={ smoothmapsM2-÷U(N)} (cf. also Prop.7.6).
(5) The lengthof the loopA~in (8.6) is (cf. theorem7.4):

ç2ir

L(A~)=J (A’,A’)”2 = ~IA —BI =rr(2EA(B))”2.

0

(6) A theoremensuringthe existenceof harmonicconnectionsin 0-curvature

orbits, hasbeengivenby Gaveau(cf. [8]).
(7) We remark that the eventualexistenceof the loop G

1 (8.8) implies the

Morse instability of each connectionA1+,,, harmonic with respect to A1 (cf.
122] for a computationof theenergy Hessian).
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9. GEODESICS IN GAUGE GROUPSOVER RIEMANN SURFACES PRODUCE
HOLOMORPHJC DATA

Let, like in the previous §, P-÷M2be a principal U(N)-bundleovera compact

RiemannsurfaceM = M2, A a fixed connectionwith p-curvature on F, ~ the
gaugegroupof automorphismsof P.

Let : [a, b] -~ ~ be a geodesicpath in ~. We haveshownthegeodesiccon-

dition to be equivalentto the2nd Eulerequation:

(3.2) dA~A;’= 0 Vt

whereAr (g
1)*A.

Equation (3.2) meansthat the I-form *A’ is dA -closed,for eacht. But A1 has

p-curvature for each t, SO that dAo dA t = 0, ai~d we can perform an Hodge

decomposition:

(9.1) *A~=dAvt +H,.

(9.2) dArHt = 0 dA *H~= 0

where v1 and H1 are paths in g and g n T*(M), respectively.Applying now to
(9.2) the standarddecompositionof T*(M) ® C in (1,0) and (0, 1) parts,relative

to the complexstructureon M, weget:

H1 = H11 + H~1dA = aA + aA and:

(9.3) ~A1hJr= 0

If p = 0 andthe connectionA is trivial (A =j’ dj), then we mayeasily get from
(9.3)a pathof holomorphic1-forms:

~z,r = (jg)
1H~

1(jg) TL21 = 0

If this is not the case, then the standardtrick, in order to extract interesting
objects from (9.3), is to apply U(N)-invariant polynomials to JJ~1(cf. [II], or
the Chern-Weil theoryof characteristicclasses).

Foraproofof the following Proposition,cf. [11].

PROPOSITION 9.1. Let g1 be a geodesicpath in ~ and let H~1be the path in
g ® T*(M) obtainedby theaboveprocedure.Then:

(i) for eachk ~+ 1, the coefficientof X~~~_kin det(H21— XI) is a path

ofholotnorphick-differentialson M;

(ii) generically,the space

M1~= {(z, X)E T’0(M)I det(H~1—l’J) =0}
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is a N-fold, t-dependentbranchedcovering of M; and the eigenspacebundle
= Ker(H~~—XI).c~V—~Misa pathof holomorphicline bundlesoverM~. .

Remarks. It is possibleto reversethe whole procedure,finding backH~1from

M~andL1 (cf. [5], [11], and [22]).

This constructiondoes not appearanyway to be useful in the descriptionof
geodesicsin gaugegroupsover Riemannsurfaces:its geometricalmeaningis in

fact obscure,and moreoverthe Cauchyproblem(6.9) doesnot translateinto a
Cauchyproblem for holomorphic differentialsor holomorphicline bundles.We

believe, anyway, that there are more things to say on the subject. As a very
limited attemptto formulatequestions,cf. next §.

10. SOME PROBLEMS AND IDEAS

(1) It is well known that the motion of a rigid body with one fixed point is a

completely integrableHamiltoniansystem. More generally,the geodesicflow on

a finite dimensionalsemisimpleLie group,endowedwith a right-invariantRieman-
nian metric, is completely integrableif andonly if the associatedEuler equation:

M’ = [w,M]

(which is in the form of a Lax pair), may be written in the strongerform of a
<<Lax pairwith spectralparameter>>:

M~=[w~,M~] AEC

If so, all the eigenvaluesof M~,for eachX, would provide conservedquantities

for the motion, in sufficient numberto ensurecompleteintegrability (cf. [14]).
We ask the following problem: when is the geodesicflow in gaugegroupsa

completely integrable infinite dimensional Hamiltonian system? The case of
gaugegroups of bundlesover Riemannsurfaces,as in §8, 9, is the onewhenthe

answeris morelikely to be positive, becauseof the conformal invarianceof the

equations,and of an already large amount of recentresultsin relatedsubjects.
We have tried, but without any success,to constructnewintegralsof the motion,

in addition to the ones describedin §4, in the form of spectral functions of
matricesor of differential operators.

(2) (Again in thecaseof Riemannsurfaces).
Uhlenbeck has described(in [20]) a decompositionof an extendedsolution

(8.8), which in §8 we provedto be a geodesicof~, in terms of I-parameter
subgroupsof ~, satisfyingcertainholomorphicityconditions.

It is possibleto perform a similar procedure,usingsomesoct of iterationof
the constructionin §7, for someclassof closedgeodesicsin ~?
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(3) Is it possible to describein a simple way, for example in terms of the

geodesiclength spectrumand of the Laplace-spectrumof P -÷M,the geodesic

length spectrumof~?(cf. Corollary 7.5 and [21J).
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